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Abstract Methods for clustering static graphs
cannot always be transfered straight forward to dy-
namic scenarios. A typical approach is to reduce the
number of updates by reusing results of previous it-
erations. But are there natural ways to implement
dynamic graph clustering? This paper proposes a
method which was derived by graph based ant colony
algorithms. Similar to other clustering algorithms,
multiple ant colonies are competing for the avail-
able nodes. Each hive creates ants, which will ex-
plore nearby graph structures and drop hive-specific
pheromones on visited nodes. Over time, hives will
collect nodes and will be relocated to the center of
all collected nodes. In case of dynamic graph cluster-
ing, pheromone values can be reused in consecutive
iterations. Our evaluation revealed that the proposed
algorithm can lead to results on a par with the k-
median algorithm and performs worse than Louvain
clustering. However competing ant hives have the
advantage of implicit noise detection, which comes at
the cost of longer computation times. This can make
it a suitable choice for certain clustering tasks.

1 Introduction

The rising development of web technology showed
how fast networks can emerge and change. Social
networks such as Facebook, MySpace and other web-
sites were created and are very popular up to date.
Their databases are source for a large set of mining
tasks. Typical examples for network analysis are ad-
vert companies being more and more interested in
providing user-specific content. Friendship relations
or group dynamics can be of special interest, for ex-
ample, when a friend of yours bought a product you
might be interested as well. Especially if the per-
son can be seen as leader of a social group, it could
have more influence. However, the databases of all
networks are growing rapidly and include millions
of changes every minute. While static graph clus-
ter analysis already resulted in multiple algorithms,
adjustments for dynamic graphs are not always trivial.

Earlier graph analysis showed that ant-colony algo-
rithms could be successfully applied to mining short-
est paths between two instances [[1]] and finding clus-



ters [2]. An advantage of ant-colony algorithms is
that they can be adjusted to dynamic scenarios by
including a time-dependent decrease of pheromones.
Results of previous runs are encoded in remaining
pheromone information and can be reused in fur-
ther iterations. We will show how a clustering al-
gorithm based on k-median and multiple competing
ant colonies can be implemented.

The three main goals of this paper are:

We want to propose a clustering algorithm based
on competing ant hives. We will investigate the
resulting cluster quality and time complexity for
static graphs. See Section [3|for an explanation of
the ant-hive algorithm.

Further on, Section [3.2] will show how the algo-
rithm can be adopted to dynamic graphs by reusing
hive locations of previous runs.

Finally our evaluation compares the algorithm to
the well known alternatives k-median and the lou-
vain method. Comparison will be done based on
multiple cluster quality measures (see Section [2.2))
and runtime of respective algorithms. The evalua-
tion of different aspects will be explained in Sec-
tion | followed by a detailed view on the results in
Section[3

2 Terminology

This chapter will introduce needed basic graph defini-
tions for the rest of the paper. We will focus on defin-
ing clusters in social graphs and go through possible
changes the graph can undergo in dynamic settings.

2.1 Social Networks/Graphs

The data can be modeled as a graph. Let a graph
be a tuple G = {V,E}, where V is a set of vertices
and E is a set of edges defined as {(u,v) | u,v €
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Figure 1: Graph with clustered structures. Framed
node groups form a densely connected cluster. Only
sparse connections can be found in between such
clusters.

Viu # v}. In case of a social network people will
be presented as vertices and communication between
them can be modeled as edges. Connections from
one person to itself will be excluded, so the graph
can be called simple since he does not include any
self loops. Furthermore we will limit our analysis
to undirected graphs where an edge e = (u,v) also
implies the existence of the edge ¢’ = (v, u).

The strength of communication between two in-
stances could be modeled as weight w(e) = (0,1], e €
E, where values close to 0 indicate nearly no commu-
nication and larger values indicate increasing levels
of communication.

2.2 Cluster-definition

Graph analysis can focus on finding clusters. A typi-
cal approach is to define a cluster as a set of vertices
with high intra-cluster density and high inter-cluster
sparsity, meaning the number of edges between nodes
of the cluster is higher than to nodes outside the clus-
ter. shows an example of clustered nodes in
a graph.

Let a clustering be a set of disjoint sets of nodes
€={Ci,...,C,} and C; to C, the clusters of a graph.
We can define two functions for measuring density
and sparsity of a cluster C;.

Let the coverage [3|] of a cluster C; be defined as the
weight of intra-cluster edges compared to the weight



of all edges and be defined as:
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In order to measure the sparsity of a cluster C; we
define the conductance [3]] which is the sum over all
edges between the cluster C; and all vertices outside
the cluster V\C;.

Let the conductance be:
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Another common graph measure for cluster evalua-
tion is modularity Q(Z) [4]. Networks with high mod-
ularity are densely connected within clusters, whereas
nodes from different clusters are only sparsely con-
nected. While modularity proved useful in a lot of
network clustering applications, its properties are not
well understood up to now [4].
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Note that the second relation includes the sum of all
edges of cluster C;. Since modularity is defined for
unweighted graphs only we can also use the node
degree of all nodes contained in cluster C;. This leads
to a more readable version defined as:
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2.3 k-Median method

The k-Median method was originally defined for data
points, but can also be used on graphs [5]]. It starts
by randomly choosing nodes as cluster centers. Itera-
tively, each node of the graph is assigned to the cluster
with the closest cluster center. As a second step of

the iteration each cluster center is reassigned to the
cluster node with the shortest average path length to
all nodes of the same cluster. This process will be
repeated until convergence.

We made further adoptions for dynamic scenarios.
First we use the final cluster centers of one time step
as initialization for the next one. This leads to prob-
lems where previous cluster centers were seperated
by large graph changes, such that the cluster included
only few nodes. We fixed this by using only a portion
of earlier cluster centers and initializing remaining
cluster centers at random. Even if a cluster is sep-
arated, it is likely to be reinitialized in further time
steps. This way overall quality of found clusters was
improved.

2.4 Louvain method

The Louvain method [|6] is based on a hierarchical
clustering approach where each node starts in its own
cluster. The used linkage criterion is the modularity
of the resulting merge. In a second step clusters are
aggregated into nodes. This process is repeated until
no gain in modularity is obtained.

The result can be visualized as a dendrogram,
where parts of it could be identified as substructures
of clusters. Experiments showed that the greedy ap-
proach of Louvain method performs well in optimiz-
ing modularity. The process showed to be compar-
atively fast and experiment evaluations estimate the
computational effort with O(n - log n). Exact modu-
larity optimization is NP-hard. Experiments showed
community sizes can be highly skewed [7]].

Because the runtime is very low, we did not fur-
ther optimize the method for dynamic graphs. Each
time step is computed as usual. Therefore found com-
munity structures and numbers could largely diverge
from previous time steps.



3 Competing Ant Hives

Swarm intelligence algorithms already showed viable
for clustering tasks and, were, for example, used for
determining shortest preference-based paths in net-
works [8]. We will follow a related approach and use
multiple ant colonies, each represented by a hive at its
center, to compete for available nodes of the network.

3.1 Competing Ant Hive Algorithm

Every cluster Cy,...,C; will be represented with a
hivenode as initial starting point. As a heuristic for
initializing the hive positions, we use the k nodes with
the highest node degree. For each iteration ants will
be exploring the graph near a hive position and drop
hive specific pheromones on visited nodes. These
pheromones can be used for prioritized movement of
ants and assigning nodes to a certain ant hive. At the
end of an iteration each hive will be relocated given
the current clustering.

The algorithm can be outlined by the following
pseudocode:

1: function COMPETINGANTHIVES
(Graph G, clusters k, iterations i)
2 intializeGraph(G)
3 hives < initializeHives(G,k)
4 for 1 to i do
5: pheromones < walkAnts(G, hives)
6 G.addPheromones(pheromones)
7 clustering < assignNodes (G, hives)
8 hives < relocateHives(G, clustering)
9 end for
10: return clustering
11: end function

Since the output of the clustering algorithm is
highly dependent on the type of ant colony used, the
following subsections present a detailed description
and justification of crucial parts of the implemented
algorithm.

3.1.1 Extending the graph definition

First we need an extended definition of a graph by
including pheromone information. Therefor we intro-
duce a pheromone graph G = {V,E, Py}, where Py
is a matrix of R/ ** pheromone weights per hive
with respect to the vertices. We will use phery(v) as
shorthand for the pheromone value on node v € V of
hive A.

An Ant Hive is defined as starting point for ants
of one colony. Using multiple ant hives results in
competing ant hives, which try to get hold of net-
work nodes. Ants of an ant hive will wander on the
graphs structure and drop pheromones on their way.
Pheromones of different hives will be treated sepa-
rately.

Graph analysis showed that social graphs tend to
have a node degree distribution following a power-
law distribution [[9]. The hubs would be a plausible
spawning position for the ant hives.

3.1.2 Ant Types

The ants’ movement strategy can lead to a global
exploration or a local exploitation of the graphs struc-
ture. We implemented three different types of ants
and will compare the resulting pheromone graphs and
clustering results in later sections. Our ant types are:

Random Ant: This ant-type will be used as a base-
line and is of interest to compare more sophis-
ticated ant types with a total random behavior.
The ant starts at a certain vertex and has the op-
tion to walk along one randomly chosen edge
to a neighboring vertex. Pheromones will be
dropped by the ants for later hive assignments.
An advantage of this ant type is the low compu-
tational complexity. Randomly choosing a node
can be done with O(1)



Base Ant: Earlier analysis of ant swarm algorithms
showed that it can be beneficial to relate the
probability of choosing a direction by current
pheromone values. For an ant of hive # let the
probability of choosing a neighbor v be:

w(u,v) - phery(v)

P(y) =
(V) Z(u,v’)eE W(”?‘/) - phery, (V/>
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where u is the current node and v a neighboring
vertex connected by an edge ¢ = (u,v) € E. In
comparison to the random ant approach this cal-
culation has an increased complexity of O(n),
since every neighbor has to be iterated. In aver-
age the complexity will be dependent on the den-
sity of the graph, because the number of neigh-
bors will be much less than n in large graphs.
This should result in bearable computational ef-
fort.

Simple Path Ant: Since the base ant could be walk-
ing back and forth between two neighboring
nodes, the amount of pheromones of both nodes
could increase too fast. For this reason we intro-
duce the simple path ant, which can only move
to nodes and edges not visited yet. The simple
path ant stores all visited nodes of the current
time step. When choosing a direction, the nodes
in the memory are not considered in the calcula-
tion of the probability. Since all directions can
be blocked by the list of forbidden nodes, the ant
just stops to move if it reaches a dead end. In ad-
dition to the high computational complexity of
calculating the node probability, this ant has an
increased memory usage for the visited nodes.

The algorithm was always used with one specified ant
type. Each hive spawns the same amount of ants on its
own node. Ant movement is determined by the above
description of the chosen ant type. Pheromones were
placed in a batch mode, where after each ant walked

one step forward, pheromone values are increased at
the current position of each ant. Hence movement of
the first ants does not influence the movement of later
ants for the same step number. See Section4.1|for a
comparison of clustering results depending on used
ant types.

3.1.3 Clustering approach

Nodes will store an amount of pheromones per hive.
The assignment of a node to a hive will be done
by choosing the hive with the highest portion of
pheromones on this node. Consequently the hive will
be reassigned to the node with the minimal average
shortest path length to all nodes assigned to the same
hive. For the next iteration pheromones will be de-
graded by a certain percentage. Hence we can control
the impact of previous pheromone information.

A special property of this assignment is implicit
noise detection. Nodes without any pheromones can
be separated as a noise cluster. This will automatically
hold true for nodes further away than the maximal
number of steps from the hive centers. Depending on
the parameters it can be very likely to exclude nodes
as noise at the border of the network.

3.2 Ant hives for dynamic graphs

An advantage of using ant-colony algorithms is that
they are easily applicable on dynamic scenarios. As
it can be observed in nature, pheromone density de-
creases over time if the path is not walked on that
often. It is also observable that ant hives will be re-
located to closer food sources if previous ones are
depleted.

As of now we explained how the algorithm works
for static graphs, but we can use a similar approach as
it was used for k-Median in order to adapt to dynamic
scenarios. Ant hive locations of the previous time
step will be used as initialization for the current one.



Pheromone values can be degraded and reused as
well.

4 Experiments

We divided our experiments in three stages. First we
investigated how the ant type influences the cluster-
ing quality. Later evaluations will be based on the
best ant-type. Secondly we compare the clustering
results of our competing ant hive algorithm with other
static graph clustering algorithms on different graph
settings. Our third evaluation focused on a clustering
comparison on dynamic graphs.

4.1 Ant Type Comparison

First we evaluated the qualitative clustering behav-
ior of varying ant types. Therefor 100 graphs of the
random Barabadsi-Albert-model [9], Watts-Strogatz-
model [10] and powerlaw-cluster-model [11] were in-
stantiated. shows the experimental setup. The
graphs vary in global and local graph properties. Es-
pecially the average path length and the node degree
distribution will be of interest. While the Barabdsi-
Albert-model and the powerlaw-cluster-model pro-
duce a node degree distribution following a power
law distribution, the Watts-Strogatz-model produces a
degree distribution resembling a Dirac-delta function
centered at k. Every graph was clustered three times
with the proposed competing ant hive clustering, each
using a different type of ant. We created between 5
to 10 ant hives and measured coverage, conductance,
modularity and time needed for the clustering. The
evaluation will also show how robust the ant hive clus-
tering algorithm works for different graph settings.

4.2 Static Graph Clustering Evaluation

In order to compare our algorithm with other cluster-
ing techniques we used the same experimental setup

Table 1: Experiment setup

Graphtype V]l k p
Watts-Strogatz 100 8 0.5
Barabdsi-Albert 1000 5 -
powerlaw-cluster 1000 5 0.5

(see and compared the results of the best ant
type to other clustering algorithms.

The louvain and the k-median method were used
for comparison in these static scenarios. Since the
louvain method is able to determine the number of
clusters, we executed it first and initialized both other
algorithms with the same amount of clusters. Other
cluster numbers would lead to skewed evaluation re-
sults, since coverage computes the average over all
clusters.

4.3 Dynamic Graph Clustering Evaluation

For the evaluation of a dynamic scenario the Enron-
dataset was used. It comprises of e-mail communi-
cation between 150 Enron-employees. A sequence
of 100 time steps of a preprocessed version of the
Enron-dataset was used [12]. Clustering results were
compared to the output of k-median and louvain clus-
tering. The louvain method was used again to deter-
mine the number of clusters. For the case that the
louvain clustering found less clusters than the last
run, only the largest cluster centers were reused as
initialization for k-median and ant-hive. If the clus-
ter number increased in comparison to previous time
steps additional centers were initialized at random.

As for the static scenario, coverage, conductance,
modularity and time consumption was measured.



5 Results

5.1 Ant Type Comparison Results

Boxplots of all three graph types are shown in Figure
Since the results are fairly similar to each other,
only the results of using Watts-Strogatz-graphs are
shown in Figure for a detailed comparison. This
graph type yielded the least variance and makes it
easier to compare the results.

It can be seen that the base ant type dominates the
other ant types in coverage, conductance and modular-
ity. This comes at the cost of a higher computational
time in comparison to the random ant. Since the sim-
ple path ant type has to do additional checks it is even
slower than the base ant. However this does not result
in a large increase of clustering accuracy. The per-
formance even decreased in case of modularity. This
could be the case due to the larger spreading of ants
from one starting point, since it is forbidden to walk
back.

Based on the results of our comparison of different
ant types, we chose the base ant type for comparison
with other algorithms in the following subsections.

5.2 Static Graph Clustering Results

shows the clustering results rated by cover-
age, conductance, modularity and time effort sorted
by graph type. In general the results of the ant hive
clustering are comparable to k-median. However both
are performing worse than louvain clustering, which
yielded the best results in all four evaluation mea-
sures.

The computational time of the ant hive algorithm
could be further adjusted by changing the number of
ants or the number of steps per ant. Increasing the ant
number did not improve the clustering in our exper-
iments, but decreasing it by a large degree can lead
to a significant decrease in clustering quality. This is

because many nodes, even nodes in the neighborhood
of a hive, will not be part of a cluster and labeled as
noise since no ant did visit it on its path.

5.3 Dynamic Graph Clustering Results

Louvain clustering seems to be superior to both other
clustering algorithms. Conductance, modularity and
time consumption are overall better than both com-
petitors. For the first time steps louvain clustering
results in good coverage values, but k-median and ant
hive clustering result in the same close conductance
values in later time steps.

6 Conclusion

In this paper we proposed a clustering algorithm
based on ant colonies, where hives are competing for
nodes in a graph. Multiple ant types were proposed
and a comparison showed that a total random behav-
ior performs much worse than a pheromone based
direction preference. However forbidding loops in
ant paths increases the computation and does not lead
to an improvement. This could be due to a loss of
cluster compactness.

The evaluation showed that our algorithm can pro-
duce comparable clustering results to other graph
mining algorithms like k-median. However its per-
formance is far behind the louvain clustering, which
performed better in all used evaluation measures. The
high performance differences could be a result of
the greedy modularity optimization method used in
louvain clustering, since modularity, coverage and
conductance are related to each other.

It could be argued to use the ant hive clustering
algorithm, if a certain number of clusters is desired.
Also implicit noise detection can be beneficial. The
first can also be achieved by k-median clustering but



both characteristics are not supported by the louvain
clustering algorithm.

The proposed ant colony algorithm showed that a
natural inspired clustering could yield a functioning
dynamic graph clustering. Unfortunately the higher
computation time and in generally worse results in
the used evaluation measures showed our algorithm to
be less effective than already known graph clustering
algorithms. Future work could go into other ant walk-
ing behaviors dedicated for optimizing modularity or
finding an optimal model parameterization depending
on the graphs properties.
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(a) Boxplots of clustering results per ant type measured on 100 random graphs per graph model. Qualitive comparison of all
ant type per graph type. Scales of the columns differ.
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(b) Detailed results for 100 Watts-Strogatz-graphs per ant type.

Figure 2: Comparison of clustering results using proposed ant types.

9



0.045
0.040
0.035
0.030
0.025
0.020
0.015
0.010

coverage

0 20 40 60 8‘0 100 0 20 40 60 80 100
0.40 T T T T 2.0 T T T T

0_35"'+I—H—I—-I—.—.—.—.—H_.+._._._h
2030 1
<025 1 g0}
2020 -
g | o5t

0.15 3| o S—

0.10 . . . L 0.0 . . . L
0 20 40 60 80 100 0 20 40 60 80 100

(a) Comparison of clustering results using louvain, k-median and ant-hive clustering on
randomly generated powerlaw-cluster-graphs with parameters set to n = 100,k = 5,p = 0.2.

0.06 4000
0.05 1 o 3500
o 2
2 0.04 1 = 3000
] E]
3 0.03 4 © 2500
8 5
0.02 4 ¥ 2000}
0.01 1500
0 20 40 60 80 100 0 20 40 60 80 100
0.30 - r T T 25 T T T T
025 | 20 +—4 kmedian
2z =—a |ouvain
T 020 1 ¢ 15 s—e anthive
2015 1 S0
£
0.10 B 0.5+
0.05 L L L L 0.0 L L L L
0 20 40 60 80 100 0 20 40 60 80 100

(b) Comparison of clustering results using louvain, k-median and ant-hive clustering on
randomly generated Barabasi-Albert-graphs with parameters set to n = 100,k = 5.
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(c) Comparison of clustering results using louvain, k-median and ant-hive clustering on
randomly generated Watts-Strogatz-graphs with parameters set to n = 100,k =8, p =0.5.

Figure 3: Static graph clustering evaluation using multiple random generated graph.
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time steps of the Enron-dataset.
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